Calibration of Drucker–Prager Cap Constitutive Model for Ceramic Powder Compaction through Inverse Analysis

Author:

Buljak Vladimir,Baivier-Romero Severine,Kallel Achraf

Abstract

Phenomenological plasticity models that relate relative density to plastic strain are frequently used to simulate ceramic powder compaction. With respect to the form implemented in finite element codes, they need to be modified in order to define governing parameters as functions of relative densities. Such a modification increases the number of constitutive parameters and makes their calibration a demanding task that involves a large number of experiments. The novel calibration procedure investigated in this paper is based on inverse analysis methodology, centered on the minimization of a discrepancy function that quantifies the difference between experimentally measured and numerically computed quantities. In order to capture the influence of sought parameters on measured quantities, three different geometries of die and punches are proposed, resulting from a sensitivity analysis performed using numerical simulations of the test. The formulated calibration protocol requires only data that can be collected during the compaction test and, thus, involves a relatively smaller number of experiments. The developed procedure is tested on an alumina powder mixture, used for refractory products, by making a reference to the modified Drucker–Prager Cap model. The assessed parameters are compared to reference values, obtained through more laborious destructive tests performed on green bodies, and are further used to simulate the compaction test with arbitrary geometries. Both comparisons evidenced excellent agreement.

Funder

Europea Union's Horizon 2020 research and innovation programme under the Marie Skodowska-Curie

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3