Microbe-Assisted Rhizoremediation of Hydrocarbons and Growth Promotion of Chickpea Plants in Petroleum Hydrocarbons-Contaminated Soil

Author:

Ali Muhammad Hayder1,Khan Muhammad Imran12ORCID,Naveed Muhammad1,Tanvir Muhammad Ayyoub3

Affiliation:

1. Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan

2. Helmholtz-Centre for Environmental Research-UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany

3. Department of Forestry and Range Management, University of Agriculture, Faisalabad 38040, Pakistan

Abstract

The present work aimed to develop and investigate microbial consortia for petroleum hydrocarbons (PHCs) detoxification and plant growth improvement in hydrocarbons-contaminated soil. Here, we isolated several bacteria from PHCs-contaminated soils to make bacterial consortia and two of the best consortia were tested in a pot experiment to evaluate their potential for PHCs removal and chickpea growth promotion in PHCs-contaminated soil. Results demonstrated that the PHCs exerted considerable phytotoxic effects on chickpea growth and physiology by causing a 13–29% and a 12–43% reduction in agronomic and physiological traits, respectively. However, in the presence of bacterial consortia, the phytotoxicity of PHCs to chickpea plants was minimized, resulting in a 7.0–24% and a 6.0–35% increase in agronomic and physiological traits, respectively over un-inoculated controls. Bacterial consortia also boosted nutrient uptake and the antioxidant mechanism of the chickpea. In addition, chickpea plants alone phytoremediated 52% of initial PHCs concentration. The addition of bacterial consortia in the presence of chickpea plants could remove 74–80% of the initial PHCs concentration in soil. Based on our research findings, we suggest that the use of multi-trait bacterial consortia could be a sustainable and environmentally friendly strategy for PHCs remediation and plant growth promotion in hydrocarbons in contaminated soil.

Funder

Higher Education Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3