Investigation on Asymmetric Instability of Cylindrical Power-Law Liquid Jets

Author:

Guo ,Bai ,Chang ,Du

Abstract

An investigation has been performed to reveal the breakup mechanism of three-dimensional power-law cylindrical jets with different mode disturbances. It is observed experimentally that the asymmetric mode disturbances could prevail over the counterpart of symmetric mode under special conditions. The dispersion equation characterizing the instability of three-dimensional cylindrical jets of power-law fluids is deduced. The effects of the Weber number, generalized Reynolds number, power-law exponent, and gas–liquid density ratio on the jet instability are studied in detail. It is found that the maximum growth rates of asymmetric mode disturbances are usually larger than those of symmetric mode disturbances under high Weber numbers and low generalized Reynolds numbers, which implies that the former are more likely to be responsible for the breakup of power-law fluids. Meanwhile, the large gas–liquid interaction could trigger more short, unstable waves. Interestingly, with the increase of jet velocity, the interaction between liquid and gas phases plays an increasingly leading role on the breakup of power-law cylindrical jets, whereas the viscous force and the power-law exponent have less significant impacts. Theoretical analysis results give a better comprehensive understanding for the power-law jets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3