Unmanned Aerial Vehicles enabled IoT Platform for Disaster Management

Author:

Ejaz WaleedORCID,Azam Muhammad Awais,Saadat Salman,Iqbal Farkhund,Hanan Abdul

Abstract

Efficient and reliable systems are required to detect and monitor disasters such as wildfires as well as to notify the people in the disaster-affected areas. Internet of Things (IoT) is the key paradigm that can address the multitude problems related to disaster management. In addition, an unmanned aerial vehicles (UAVs)-enabled IoT platform connected via cellular network can further enhance the robustness of the disaster management system. The UAV-enabled IoT platform is based on three main research areas: (i) ground IoT network; (ii) communication technologies for ground and aerial connectivity; and (iii) data analytics. In this paper, we provide a holistic view of a UAVs-enabled IoT platform which can provide ubiquitous connectivity to both aerial and ground users in challenging environments such as wildfire management. We then highlight key challenges for the design of an efficient and reliable IoT platform. We detail a case study targeting the design of an efficient ground IoT network that can detect and monitor fire and send notifications to people using named data networking (NDN) architecture. The use of NDN architecture in a sensor network for IoT integrates pull-based communication to enable reliable and efficient message dissemination in the network and to notify the users as soon as possible in case of disastrous situations. The results of the case study show the enormous impact on the performance of IoT platform for wildfire management. Lastly, we draw the conclusion and outline future research directions in this field.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3