Abstract
In this paper, we present zinc oxide (ZnO)-based flexible harvesting devices employing commercially available, cost-effective thin aluminum (Al) foils as substrates and conductive bottom electrodes. From the device fabrication point of view, Al-foils have a relatively high melting point, allowing for device processing and annealing treatments at elevated temperatures, which flexible plastic substrate materials cannot sustain because of their relatively low melting temperatures. Moreover, Al-foil is a highly cost-effective, commercially available material. In this work, we fabricated and characterized various kinds of multilayered thin-film energy harvesting devices, employing Al-foils in order to verify their device performance. The fabricated devices exhibited peak-to-peak output voltages ranging from 0.025 V to 0.140 V. These results suggest that it is feasible to employ Al-foils to fabricate energy-efficient energy harvesting devices at relatively high temperatures. It is anticipated that with further process optimization and device integration, device performance can be further improved.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献