Weather-Dependent Nonlinear Microwave Behavior of Seasonal High-Elevation Snowpacks

Author:

Cao YueqianORCID,Barros AnaORCID

Abstract

Ensemble predictions of the seasonal snowpack over the Grand Mesa, CO (~300 km2) for the hydrologic year 2016–2017 were conducted using a multilayer snow hydrology model. Snowpack ensembles were driven by gridded atmospheric reanalysis and evaluated against SnowEx’17 measurements. The multi-frequency microwave brightness temperatures and backscattering behavior of the snowpack (separate from soil and vegetation contributions) show that at sub-daily time-scales, the ensemble standard deviation (i.e., weather variability at 3 × 3 km2) is < 3 dB for dry snow, and increases to 8–10 dB at mid-day when there is surficial melt that also explains the wide ensemble range (~20 dB). The linear relationship of the ensemble mean backscatter with SWE (R2 > 0.95) depends on weather conditions (e.g., 5–6 cm/dB/month in January; 2–2.5 cm/dB/month in late February as melt-refreeze cycles modify the microphysics in the top 50 cm of the snowpack). The nonlinear evolution of ensemble snowpack physics translates into seasonal hysteresis in the mesoscale microwave behavior. The backscatter hysteretic offsets between accumulation and melt regimes are robust in the L- and C-bands and collapse for wet, shallow snow at Ku-band. The emissions behave as a limit-cycles with weak sensitivity in the accumulation regime, and hysteretic behavior during melt that is different for deep (winter-spring transition) and shallow snow (spring-summer), and offsets that increase with frequency. These findings suggest potential for multi-frequency active-passive remote-sensing of high-elevation SWE conditional on snowpack regime, particularly suited for data-assimilation using coupled snow hydrology-microwave models extended to include snow-soil and snow-vegetation interactions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3