Ground Deformation and Its Causes in Abbottabad City, Pakistan from Sentinel-1A Data and MT-InSAR

Author:

Shahzad NaeemORCID,Ding XiaoliORCID,Wu SongboORCID,Liang HongyuORCID

Abstract

Land subsidence, as one of the engineering geological problems in the world, is generally caused by compression of unconsolidated strata due to natural or anthropogenic activities. We employed interferometric point target analysis (IPTA) as a multi-temporal interferometric synthetic aperture radar (MT-InSAR) technique on ascending and descending Sentinel-1A the terrain observation with progressive scans SAR (TOPSAR) images acquired between January 2015 and December 2018 to analyze the spatio-temporal distribution and cause of subsidence in Abbottabad City of Pakistan. The line of sight (LOS) average deformation velocities along ascending and descending orbits were decomposed into vertical velocity fields and compared with geological data, ground water pumping schemes, and precipitation data. The decomposed and averaged vertical velocity results showed significant subsidence in most of the urban areas in the city. The most severe subsidence was observed close to old Karakorum highway, where the subsidence rate varied up to −6.5 cm/year. The subsidence bowl profiles along W–E and S–N transects showed a relationship with the locations of some water pumping stations. The monitored LOS time series histories along an ascending orbit showed a close correlation with the rainfall during the investigation period. Comparative analysis of this uneven prominent subsidence with geological and precipitation data reflected that the subsidence in the Abbottabad city was mainly related to anthropogenic activities, overexploitation of water, and consolidation of soil layer. The study represents the first ever evidence of land subsidence and its causes in the region that will support the local government as well as decision and policy makers for better planning to overcome problems of overflowing drains, sewage system, littered roads/streets, and sinking land in the city.

Funder

Research Grants Council, University Grants Committee

Research Institute for Sustainable Urban Development, Hong Kong Polytechnic University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3