Estimating Crop and Grass Productivity over the United States Using Satellite Solar-Induced Chlorophyll Fluorescence, Precipitation and Soil Moisture Data

Author:

Halubok MaryiaORCID,Yang Zong-LiangORCID

Abstract

This study investigates how gross primary production (GPP) estimates can be improved with the use of solar-induced chlorophyll fluorescence (SIF) based on the interdependence between SIF, precipitation, soil moisture and GPP itself. We have used multi-year datasets from Global Ozone Monitoring Experiment-2 (GOME-2), Tropical Rainfall Measuring Mission (TRMM), European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM), and FLUXNET observations from ten stations in the continental United States. We have employed a GPP quantification framework that makes use of two factors whose influence on the SIF–GPP relationship was not evaluated previously—namely, differential plant sensitivity to water supply at different stages of its lifecycle and spatial variability patterns in SIF that are in contrast to those of GPP, precipitation, and soil moisture. It was found that over the Great Plains and Texas, fluorescence emission levels lag behind precipitation events from about two weeks for grasses to four weeks for crops. The spatial variability of SIF and GPP is shown to be characterized by different patterns: SIF demonstrates less variation over the same spatial extent as compared to GPP, precipitation and soil moisture. Thus, using newly introduced SIF–precipitation lead–lag relationships, we estimate GPP using SIF, precipitation and soil moisture data for grasses and crops over the US by applying the multiple linear regression technique. Our GPP estimates capture the drought impact over the US better than those from Moderate Resolution Imaging Spectroradiometer (MODIS). During the drought year of 2011 over Texas, our GPP values show a decrease by 50–75 gC/m2/month, as opposed to the normal yielding year of 2007. In 2012, a drought year over the Great Plains, we observe a significant reduction in GPP, as compared to 2007. Hence, estimating GPP using specific SIF–GPP relationships, and information on different plant functional types (PFTs) and their interactions with precipitation and soil moisture over the Great Plains and Texas regions can help produce more reasonable GPP estimates.

Funder

National Key Research and Development Program of China

Jackson School of Geosciences,University of Texas at Austin

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3