Quasi-Active Thermal Imaging of Large Floating Covers Using Ambient Solar Energy

Author:

Ma Yue,Wong LeslieORCID,Vien Benjamin StevenORCID,Kuen Thomas,Kodikara Jayantha,Chiu Wing Kong

Abstract

Melbourne Water Corporation has two large anaerobic lagoons at the Western Treatment Plant (WTP), Werribee, Victoria, Australia. The lagoons are covered using numerous sheets of high-density polyethylene (HDPE) geomembranes to prevent the emission of odorous gases and to harness biogas as a source of renewable energy. Some of the content of raw sewage can accumulate and form into a solid mass (called “scum”). The development of a large body of solid scum that rises to the surface of the lagoon (called “scumbergs”) deforms the covers and may affect its structural integrity. Currently, there is no method able to effectively “see-through” the opaque covers to define the spread of the scum underneath the cover. Hence, this paper investigates a new quasi-active thermal imaging method that uses ambient solar radiation to determine the extent of the solid matter under the geomembrane. This method was devised by using infrared thermography and a pyranometer to constantly monitor the transient temperature response of the HDPE geomembrane using the time varying ambient solar radiation. Newton’s cooling law is implemented to define the resultant cooling constants. The results of laboratory-scale tests demonstrate the capability of the quasi-active thermography to identify the presence and the extent of solid matter under the cover. This paper demonstrates, experimentally, the importance of measuring the surface temperature of the cover and solar intensity profiles to obtain the cooling process when during variations in solar intensity during normal sunrise, sunset, daily transitioning from morning–afternoon–evening and cloud cover events. The timescale associated with these events are different and the results show that these daily transient temperature cycles of the geomembranes can be used to detect the extent of the accumulation of solid matter underneath the geomembrane. The conclusions from this work will be further developed for field trials to practically monitor the growth in the extent of the scum under the floating covers in WTP with the ambient solar energy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3