Author:
Zhang Lifei,Viktorovich Proletarsky Andrey,Selezneva Maria Sergeevna,Neusypin Konstantin Avenirovich
Abstract
In this paper, a low-cost small-sized strap-down inertial navigation system (SINS)—Gyrolab GL-VG 109—is studied. When the system is installed on an unmanned vehicle and works in autonomous mode, it is difficult to determine the navigation parameters of the unmanned vehicle. Correcting the SINS information from the Global Navigation Satellite System (GNSS) can significantly increase the determination accuracy of the navigation parameters. However, this is only available when the GNSS signals are stable. A new adaptive estimation algorithm that can automatically detect, evaluate, and process the abnormal measurements is proposed in the present work. The determination of the navigation parameters can reach the third accuracy class using the proposed method. The effectiveness of the algorithm is verified by the mathematical simulation and the experimental tests (with a real SINS GL-VG 109), which are conducted in urban environments with a GNSS signal containing 15% and 40% abnormal measurements. The results show that the proposed method can significantly reduce the impact of abnormal measurements and improve the estimation accuracy.
Funder
Russian Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献