Dietary Isoeugenol Supplementation Attenuates Chronic UVB-Induced Skin Photoaging and Modulates Gut Microbiota in Mice

Author:

Geng Ruixuan123ORCID,Kang Seong-Gook4ORCID,Huang Kunlun123,Tong Tao123ORCID

Affiliation:

1. Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

2. Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China

3. Beijing Laboratory for Food Quality and Safety, Beijing 100083, China

4. Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea

Abstract

Photoaging, the primary cause of skin aging damage, results from chronic ultraviolet (UV) exposure, leading to dryness and wrinkle formation. Nutritional intervention has emerged as a practical approach for preventing and addressing the effect of skin photoaging. The primary aromatic compound isolated from clove oil, isoeugenol (IE), has antibacterial, anti-inflammatory, and antioxidant qualities that work to effectively restrict skin cancer cell proliferation. This investigation delved into the advantages of IE in alleviating skin photoaging using UVB-irradiated skin fibroblasts and female SKH-1 hairless mouse models. IE alleviated UVB-induced photodamage in Hs68 dermal fibroblasts by inhibiting matrix metalloproteinase secretion and promoting extracellular matrix synthesis. In photoaged mice, dietary IE reduced wrinkles, relieved skin dryness, inhibited epidermal thickening, and prevented collagen loss. Additionally, the intestinal dysbiosis caused by prolonged UVB exposure was reduced with an IE intervention. The results of Spearman’s analysis showed a strong correlation between skin photoaging and gut microbiota. Given the almost unavoidable UVB exposure in contemporary living, this research demonstrated the efficacy of dietary IE in reversing skin photoaging, presenting a promising approach to tackle concerns related to extrinsic skin aging.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3