Abstract
The use of sensors and actuators as a form of controlling cyber-physical systems in resource networks has been integrated and referred to as the Internet of Things (IoT). However, the connectivity of many stand-alone IoT systems through the Internet introduces numerous cybersecurity challenges as sensitive information is prone to be exposed to malicious users. This paper focuses on the improvement of IoT cybersecurity from an ontological analysis, proposing appropriate security services adapted to the threats. The authors propose an ontology-based cybersecurity framework using knowledge reasoning for IoT, composed of two approaches: (1) design time, which provides a dynamic method to build security services through the application of a model-driven methodology considering the existing enterprise processes; and (2) run time, which involves monitoring the IoT environment, classifying threats and vulnerabilities, and actuating in the environment ensuring the correct adaptation of the existing services. Two validation approaches demonstrate the feasibility of our concept. This entails an ontology assessment and a case study with an industrial implementation.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Horizon 2020 Framework Programme
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献