Evaluation of IEEE802.15.4g for Environmental Observations

Author:

Muñoz Jonathan,Chang Tengfei,Vilajosana Xavier,Watteyne ThomasORCID

Abstract

IEEE802.15.4g is a low-power wireless standard initially designed for Smart Utility Networks, i.e., for connecting smart meters. IEEE802.15.4g operates at sub-GHz frequencies to offer 2–3× longer communication range compared to its 2.4 GHz counterpart. Although the standard offers 3 PHYs (Frequncy Shift Keying, Orthogonal Frequency Division Multiplexing and Offset-Quadrature Phase Shift Keying) with numerous configurations, 2-FSK at 50 kbps is the mandatory and most prevalent radio setting used. This article looks at whether IEEE802.15.4g can be used to provide connectivity for outdoor deployments. We conduct range measurements using the totality of the standard (all modulations with all further parametrization) in the 863–870 MHz band, within four scenarios which we believe cover most low-power wireless outdoor applications: line of sight, smart agriculture, urban canyon, and smart metering. We show that there are radio settings that outperform the “2-FSK at 50 kbps” base setting in terms of range, throughput and reliability. Results show that highly reliable communications with data rates up to 800 kbps can be achieved in urban environments at 540 m between nodes, and the longest useful radio link is obtained at 779 m. We discuss how IEEE802.15.4g can be used for outdoor operation, and reduce the number of repeater nodes that need to be placed compared to a 2.4 GHz solution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology

2. Real-Time Alpine Measurement System Using Wireless Sensor Networks

3. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) IEEE Std 802.15.4-2015,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3