The Tools and Parameters to Consider in the Design of Power Transformer Cooling Systems

Author:

Goscinski Przemyslaw1,Nadolny Zbigniew1ORCID,Nawrowski Ryszard2,Boczar Tomasz3

Affiliation:

1. Institute of Electric Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland

2. Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, 60-965 Poznan, Poland

3. Institute of Electric Power Engineering and Renewable Energy, Faculty of Electrical Engineering Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland

Abstract

Transformers are the most important elements of electric power systems. Many conditions must be met for power transformers to work properly. One of them is a low operating temperature. This condition will be met if the transformer cooling system is properly designed. One of the components of a cooling system is insulating liquid. The heat transfer coefficient α of liquid determines its ability to cool the transformer. The higher its value, the more effectively the liquid transfers heat to the environment. This article describes the influence of the position of the heat source, which is usually in the windings of the transformer, on the coefficient α value of the insulating liquid. The vertical and horizontal positions of the heat source were analyzed. The coefficient α was analyzed at different points of the heat source. The tests were carried out for mineral oil and various esters. Heat transfer coefficient measurements were carried out for various surface heat loads of the heat source. It has been proven that, in the case of a horizontal heat source, the coefficient α has a value several dozen percent higher than in the case of a vertical source. It has been proven that the coefficient α has different values in different places of the heat source. Regardless of the location, the highest value of the coefficient α occurred in the lower part of the heat source.

Funder

Poznan University of Technology’s financial resources for statutory activity

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3