Geological and Geochemical Responses to Productivity of CBM Wells in the Baiyang River Block of the Southern Junggar Basin, China

Author:

Sun Bin1,Tang Shuling2ORCID,Tao Shu2,Chen Shida2,Zhi Yuanhao2,Zhang Bin2,Wen Yijie2

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration and Development, Langfang 065007, China

2. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

The southern Junggar Basin, Xinjiang, has abundant coalbed methane (CBM) resources. Currently, the Baiyang River development pilot test area (BYR block for short) in the Fukang east block has achieved large-scale CBM development, but the productivity characteristics and its controlling factor are still unclear. Based on the field production data of the BYR block and experimental tests, this paper summarizes the gas and water production characteristics and presents the analysis results of the geological and geochemical responses to the productivity of CBM wells. The productivity of CBM wells in the BYR block was generally characterized as medium-to-low yield. The productivity was jointly controlled by the burial depth, structure condition, thickness and number of co-production coal seams, and hydrogeological conditions. The gas production first increased and then decreased with the increase in the burial depth of the coal seam, and a burial depth between 750 and 1000 m was the most beneficial to increasing the gas production due to the good gas preservation conditions and suitable permeability and stress conditions. The total thickness of the co-production coal seams had a positive effect on the productivity of gas wells, but the productivity was also affected by the number of co-production coal seams and interlayer interference. In the BYR block, the co-production of the nos. 41 and 42 coal seams was the most favorable combination form for CBM drainage. The productivity of CBM wells had a good response to the Na+, K+ and HCO3− concentrations but a poor response to δD-H2O and δ18O-H2O. Based on the concentrations of the main ions and TDSs of the coal seam water, a productivity response index δ* was established, and there was a good positive correlation between the productivity and δ*.

Funder

“14th Five Year Plan” Forward-Looking Basic Major Science and Technology Project of CNPC

Tackling applied science and technology projects of China National Petroleum Corporation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3