Kraft Lignin Electro-Oxidation under Ambient Temperature and Pressure

Author:

Han Jiashuai1,Lin Roger1ORCID,Salehi Mahdi1,Farzi Amirhossein1ORCID,Carkner Andrew1ORCID,Liu Kefang1,Abou El-Oon Omar1,Ajao Olumoye2ORCID,Seifitokaldani Ali1

Affiliation:

1. Department of Chemical Engineering, McGill University, Montréal, QC H3A 0C5, Canada

2. Natural Resources Canada, Fuels Sector, Analysis and Operations Branch, Ottawa, ON K1A 0E4, Canada

Abstract

Lignin is the largest natural source of aromatic chemicals. Due to its complex polymeric structure, Kraft lignin is under-utilized and usually combusted for heat generation, thus resulting in CO2 emissions in the Kraft process. To valorize lignin with renewable electricity and to convert it into value-added aromatic chemicals, efficient electrochemical methods need to be discovered, based not only on its apparent yield of building block chemicals but also on its energy efficiency. In this study, the electro-oxidative performance of six different metals was systematically evaluated. The results showed that the synthesized Ni-based catalyst can increase the vanillin and vanillic acid apparent yield by 50–60% compared to when Ni-based catalyst is absent. We also found that the oxygen evolution reaction (OER) is more than a competing reaction since the presence of oxygen synergistically aids oxidation of the lignin to increase aromatic chemical production by 63% compared to the sum of vanillin generation from both voltage-only and oxygen-only scenarios. With the novel proposed notion of charge efficiency, we showed that utilizing a thinner layer of Ni catalyst balances the OER and the oxidative reaction of lignin, thus improving the charge efficiency for vanillin by 22%

Funder

Fonds de recherche du Québec–Nature et technologies

NSERC Discovery Grant

Canada Research Chair

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3