Energy, Exergy and Thermoeconomic Analyses on Hydrogen Production Systems Using High-Temperature Gas-Cooled and Water-Cooled Nuclear Reactors

Author:

Kim Taehun12,Lee Won-Yong23,Seo Seok-Ho4ORCID,Oh Si-Doek45ORCID,Kwak Ho-Young46

Affiliation:

1. Department of Energy Policy, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

2. Office of Strategic R&D Planning, 305 Teheran-ro, Gangnam-gu, Seoul 06152, Republic of Korea

3. Korea Institute of Energy Research, 140 Yuseong-daero 1312beon-gil, Yuseong-gu, Daejeon 34101, Republic of Korea

4. Blue Economy Strategy Institute Co., Ltd., 150 Dogok-ro, Gangnam-gu, Seoul 06260, Republic of Korea

5. Department of Climate Change Energy Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

6. Mechanical Engineering Department, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

Abstract

The use of nuclear energy is inevitable to reduce the dependence on fossil fuels in the energy sector. High-temperature gas-cooled reactors (HTGRs) are considered as a system suitable for the purpose of reducing the use of fossil fuels. Furthermore, eco-friendly mass production of hydrogen is crucial because hydrogen is emerging as a next-generation energy carrier. The unit cost of hydrogen production by the levelized cost of energy (LCOE) method varies widely depending on the energy source and system configuration. In this study, energy, exergy, and thermoeconomic analyses were performed on the hydrogen production system using the HTGR and high-temperature water-cooled nuclear reactor (HTWR) to calculate reasonable unit cost of the hydrogen produced using a thermoeconomic method called modified production structure analysis (MOPSA). A flowsheet analysis was performed to confirm the energy conservation in each component. The electricity generated from the 600 MW HTGR system was used to produce 1.28 kmol/s of hydrogen by electrolysis to split hot water vapor. Meanwhile, 515 MW of heat from the 600 MW HTWR was used to produce 8.10 kmol/s of hydrogen through steam reforming, and 83.6 MW of electricity produced by the steam turbine was used for grid power. The estimated unit cost of hydrogen from HTGR is approximately USD 35.6/GJ with an initial investment cost of USD 2.6 billion. If the unit cost of natural gas is USD 10/GJ, and the carbon tax is USD 0.08/kg of carbon dioxide, the unit cost of hydrogen produced from HTWR is approximately USD 13.92/GJ with initial investment of USD 2.32 billion. The unit cost of the hydrogen produced in the scaled-down plant was also considered.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3