Empirical Degradation Models of the Different Indexes of the Proton Exchange Membrane Fuel Cell Based on the Component Degradation

Author:

Fan Lei1,Gao Jianhua1,Lu Yanda1,Shen Wei23,Zhou Su124

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. School of Intelligent Manufacturing, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China

3. Shanghai TXJS Engineering Technology Co., Ltd., Shanghai 201804, China

4. Chinesisch-Deutsches Hochschulkolleg, Tongji University, Shanghai 201804, China

Abstract

To describe the degradation of proton exchange membrane fuel cells (PEMFCs), empirical degradation models of different indexes of PEMFCs are established. Firstly, the simulation process and assumptions of PEMFC degradation are proposed. Secondly, the degradation simulation results including the performance and distribution indexes under the different degradation levels are conducted by AVL FIRE M. Finally, the empirical degradation models of performance and distribution indexes are established based on the above simulation results and experimental data. The results show that the relationship between the experimental and simulation results is established by the index of current density. The empirical degradation models of current density, average equilibrium potential on the cathode catalyst layer (CL), average membrane water content, average oxygen molar concentration on the cathode CL, and average hydrogen crossover flux are the linear function. The empirical degradation models of average exchange current density on the anode CL, average hydrogen molar concentration on the anode CL, and average oxygen crossover flux are the quadratic function. The empirical degradation model of average activation overpotential on the cathode CL is the quintic function.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3