Power Management Strategy of Hybrid Fuel Cell Drones for Flight Performance Improvement Based on Various Algorithms

Author:

Hyun Daeil1,Han Jaeyoung23,Hong Seokmoo23ORCID

Affiliation:

1. Department of Future Convergence Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Chungcheongnam-do, Republic of Korea

2. Department of Future Automotive Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Chungcheongnam-do, Republic of Korea

3. Institute of Green Car Technology, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Chungcheongnam-do, Republic of Korea

Abstract

In recent years, there has been a growing demand for multipurpose drones that can handle surveillance, environmental monitoring, and urgent deliveries. This trend has spurred the need for increased power and longer flight times for drones. Hence, many researchers introduced various hybrid systems to enhance endurance. In particular, a hybrid system that integrates solar cells, fuel cells, and batteries can substantially enhance a drone’s endurance. However, linking multiple power sources necessitates a control strategy that prioritizes safety and durability. It is also essential to analyze the control characteristics of each component as the dynamic behavior of individual components, coupled with environmental factors, significantly impacts the overall dynamic characteristics of drone systems. This study introduces a PEMFC–battery drone model. The model’s dynamic characteristics can be evaluated based on changes in environmental conditions and the control strategies of primary components. The validity of this model is confirmed by analyzing the dynamic characteristics of drone systems. As a result, the MRAC logic applied to the flight-level control and thrust motor of the drone was found to amplify the characteristics of the underlying PI and IP controllers. These control characteristics can lead to the development of control strategies for improving the flight performance or power durability of the aircraft by being properly applied to the flight environment of the drone.

Funder

Ministry of Education

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3