Abstract
In this paper, a thorough 2D unsteady computational fluid dynamic analysis was performed on a pitching airfoil to properly comprehend the dynamic stall and aerodynamic forces. The computational software ANSYS Fluent was used to solve the unsteady Reynolds-averaged Navier–Stokes equations. Low Reynolds number flows were modeled using the k-ω shear stress transport turbulence model. Aerodynamic forces, fluid flow structures, and flow separation delay angles were explored as a function of the Reynolds number, reduced frequency, oscillation amplitude, and mean angle of attack. The maximum aerodynamic forces, including lift, drag, and the onset of the dynamic stall, were all influenced by these variables. The critical parameters that influenced the optimum aerodynamic forces and ended up causing dynamic stall delay were oscillation amplitude and mean angle of attack. The stall angle was raised by 9° and 6°, respectively, and a large increment in the lift coefficient was also noted in both cases. Additionally, for the highest Reynolds number, a considerable rise in the maximum lift coefficient of 20% and a 28% drop in drag coefficient were observed, with a 1.5° delay in the stall angle. Furthermore, a significant increase of 33% in the lift force was seen with a rise of 4.5° in the stall angle in the case of reduced frequency.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献