Tracking and Rejection of Biased Sinusoidal Signals Using Generalized Predictive Controller

Author:

Cordero RaymundoORCID,Estrabis ThyagoORCID,Gentil GabrielORCID,Caramalac MatheusORCID,Suemitsu WalterORCID,Onofre JoãoORCID,Brito MoacyrORCID,dos Santos Juliano

Abstract

Some novel applications require the tracking/rejection of biased sinusoidal reference/distur-bances. According to the internal model principle (IMP), a controller must embed the model of a biased sinusoidal signal to track references and also reject perturbations modeled through the aforementioned signal. However, the design of that kind of controller is not straightforward, especially when they are implemented in digital processors. This paper presents a controller, based on generalized predictive control (GPC), designed for tracking/rejection of biased sinusoidal signals. In general, GPC is based on the prediction of the plant responses through an augmented prediction model. The proposed approach develops an augmented model that predicts the future errors. The prediction model and the control law used in the proposed approach embed the discrete-time model of a biased sinusoidal signal. Thus, the proposed controller can track/reject biased sinusoidal references/disturbances. The predicted errors and the future inputs of the proposed augmented model are used to define the cost function that measures the control performance. An optimization technique was applied to obtain the solution of the cost function, which is the optimal sequence of future model inputs that allows defining the control law. Experimental tests prove that the proposed controller can asymptotically track and reject biased sinusoidal signals.

Funder

The Coordenação de Aperfeiçoamento de Pessoal de 174 Nível Superior - Brasil

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3