An Overview of Dynamic Inductive Charging for Electric Vehicles

Author:

Mohamed Ahmed A. S.,Shaier Ahmed A.ORCID,Metwally Hamid,Selem Sameh I.

Abstract

Inductive power transfer (IPT) technology offers a promising solution for electric vehicle (EV) charging. It permits an EV to charge its energy storage system without any physical connections using magnetic coupling between inductive coils. EV inductive charging is an exemplary option due to the related merits such as: automatic operation, safety in harsh climatic conditions, interoperability, and flexibility. There are three visions to realize wireless EV charging: (i) static, in which charging occurs while EV is in long-term parking; (ii) dynamic (in-motion), which happens when EV is moving at high speed; and (iii) quasi-dynamic, which can occur when EV is at transient stops or driving at low speed. This paper introduces an extensive review for IPT systems in dynamic EV charging. It offers the state-of-the-art of transmitter design, including magnetic structure and supply arrangement. It explores and summarizes various types of compensation networks, power converters, and control techniques. In addition, the paper introduces the state-of-the-art of research and development activities that have been conducted for dynamic EV inductive charging systems, including challenges associated with the technology and opportunities to tackle these challenges. This study offers an exclusive reference to researchers and engineers who are interested in learning about the technology and highlights open questions to be addressed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference324 articles.

1. Reducing the US Transportation Sector’s Oil Consumption and Greenhouse Gas Emissions;Morrow,2010

2. Wireless Inductive Charging for Low Power Devices;Macharia;Ph.D. Thesis,2017

3. Hertz’s Experiments http://people.seas.harvard.edu/~jones/cscie129/nu_lectures/lecture6/hertz/Hertz_exp.html

4. Experiments with alternate currents of high potential and high frequency

5. A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3