Enabling Co-Innovation for a Successful Digital Transformation in Wind Energy Using a New Digital Ecosystem and a Fault Detection Case Study

Author:

Barber SarahORCID,Lima Luiz Andre Moyses,Sakagami YoshiakiORCID,Quick JulianORCID,Latiffianti EffiORCID,Liu YichaoORCID,Ferrari RiccardoORCID,Letzgus Simon,Zhang Xujie,Hammer Florian

Abstract

In the next decade, further digitalisation of the entire wind energy project lifecycle is expected to be a major driver for reducing project costs and risks. In this paper, a literature review on the challenges related to implementation of digitalisation in the wind energy industry is first carried out, showing that there is a strong need for new solutions that enable co-innovation within and between organisations. Therefore, a new collaboration method based on a digital ecosystem is developed and demonstrated. The method is centred around specific “challenges”, which are defined by “challenge providers” within a topical “space” and made available to participants via a digital platform. The data required in order to solve a particular “challenge” are provided by the “challenge providers” under the confidentiality conditions they specify. The method is demonstrated via a case study, the EDP Wind Turbine Fault Detection Challenge. Six submitted solutions using diverse approaches are evaluated. Two of the solutions perform significantly better than EDP’s existing solution in terms of Total Prediction Costs (saving up to €120,000). The digital ecosystem is found to be a promising solution for enabling co-innovation in wind energy in general, providing a number of tangible benefits for both challenge and solution providers.

Funder

Swiss Federal Office of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3