Principles of Magnetohydrodynamical Control of Internal and External Supersonic Flows

Author:

Lapushkina Tatiana1ORCID

Affiliation:

1. Ioffe Institute, Politekhnicheskaya Str. 26, 194021 St. Petersburg, Russia

Abstract

This paper demonstrates the possibility of active magnetohydrodynamic (MHD) control of supersonic flows containing shock waves. The shock wave configurations that occur at the inlet to a supersonic diffuser and in front of a streamlined semicylindrical model are used for the purpose of investigation. The impact is carried out by organizing local gas discharge regions when applying a magnetic field transverse to gas discharge currents. It has been shown that by changing the local region of application, the intensity and the direction of the gas discharge currents, it is possible to change the intensity and direction of the ponderomotive force acting on the gas flow during MHD interaction. The ponderomotive force control allows for acting locally on the shape and position of shock waves, the speed and direction of the flow, and the increase or reduction of pressure near the surface of the streamlined body. The experiments were carried out on a gas dynamic setup based on a shock tube in a gas dynamic path, capable of creating supersonic flows in a wide range of Mach numbers at M = 4–7. There was a possibility of organizing the electric and pulsed magnetic fields with an intensity of up to 1.5 T. The given experimental Schlieren flow patterns and the analysis of the obtained data demonstrate the MHD effect on: the change in the angle of inclination of the attached shocks, both into increase and decrease; the bow shock wave approaching the body or the removal from it; and the change in the aerodynamic drag and lift force of the streamlined bodies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3