Numerical and Experimental Investigation on Safety of Downhole Solid–Liquid Separator for Natural Gas Hydrate Exploitation

Author:

Nie Qi,Zhang Shifan,Huang Yuan,Yi Xianzhong,Wu Jiwei

Abstract

Deep water shallow natural gas hydrate (NGH) is a kind of clean energy and has entered the commercial exploitation stage. However, it produces a lot of seabed sediment in the process of large-scale mining, which not only easily causes undersea natural hazards, but also leads to pipeline equipment blockage and high energy consumption in the mining process. A downhole solid–liquid separator can effectively separate natural gas hydrate from sand and backfill sand in situ, which can effectively solve this problem. In this paper, the safety of a downhole solid–liquid separator desander under torsion conditions is determined by a test method. A numerical simulation method was used to simulate the tension and pressure of the downhole solid–liquid separator, and a modal simulation analysis and erosion analysis of the downhole solid–liquid separator were carried out. The experiments showed that the downhole solid–liquid separator could withstand 30 KN/m of torque, and a numerical simulation analysis showed that it could withstand 30 MPa of pressure and 50 KN of tension. The results show that the maximum stress is 116.56 MPa, and the maximum allowable stress is 235 MPa. The modal analysis showed that the downhole solid–liquid separator produces resonance at a frequency of about 93 Hz, resulting in large deformation, which should be avoided as far as possible. Through the erosion analysis, the life of the downhole solid–liquid separator was determined to be about 2.3 years. Numerical simulation and experimental results show that the designed downhole solid–liquid separator for natural gas hydrate can ensure safety.

Funder

Jiwei Wu

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3