Abstract
South Africa is one of the most carbon-intensive economies in the world, but it is presently experiencing an energy crisis, as its utility company cannot meet the country’s energy demands. The use of renewable energy sources and retiring of coal-fired power stations are two important ways of alleviating this problem, as well as decarbonizing the grid. Repurposing retiring coal-fired power stations for renewable energy generation (RCP-RES) while maintaining energy sustainability and reliability has rarely been researched. This paper proposes macro- and microelements for repurposing retiring coal-fired power stations for renewable energy generation in Camden with the aim of improving power generation through a low-carbon system. In this model, concentrated solar power (CSP) and solar photovoltaics (SPV), in combination with storage technologies (STs), were employed for RCP-RES, owing to their excellent levels of availability in the retiring fleet regions. The simulation results show that the power densities of CSP and SPV are significantly lower compared with retiring a coal-fired power plant (CFPP). Both are only able to generate 8.4% and 3.84% rated capacity of the retired CFPP, respectively. From an economic perspective, the levelized cost of electricity (LCOE) analysis indicates that CSP is significantly cheaper than coal technology, and even cheaper when considering SPV with a storage system.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference26 articles.
1. The Economic Impact of Loadshedding: The Case of South African Retailers;Goldberg;Master’s Thesis,2015
2. The Carbon Brief Profile: South Africa;McSweeney,2018
3. A review on Africa energy supply through renewable energy production: Nigeria, Cameroon, Ghana and South Africa as a case study
4. Power System Demand Management Contract Design: A Comparison between Game Theory and Artificial Neural Networks;Nwulu;Int. Rev. Model. Simul.,2011
5. Identification of Weak Buses for Optimal Load Shedding Using Differential Evolution
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献