A Heat Exchanger with Water Vapor Condensation on the External Surface of a Vertical Pipe

Author:

Kracík PetrORCID,Toman FilipORCID,Pospíšil JiříORCID,Kraml Stanislav

Abstract

The paper is concerned with water vapor condensation on vertical pipes. The vertical position of pipes in a condenser is not discussed very often. Its application has a number of particularities in terms of the numerical determination of heat transfer. In the first stage of this paper, the authors focus on the experimental identification of heat transfer during vapor condensation on vertical pipes with a diameter of 14.0 × 1.0 mm. The pipes are placed in a narrow channel and the steam flows around them in a perpendicular direction. Two channel widths were tested, i.e., 20.0 and 24.0 mm. In the second stage, numerical modelling (CFD) is used for a detailed identification of the vapor velocity fields near the pipes. In the third stage, the results of the experimental measurements and numerical modelling are compared with data published by various authors. There are studies in the literature dealing with axial flow around vertical pipes; however, the associated results are based on conditions which are distinct from those applied in our study. The outcome of this paper is the specification of the heat transfer coefficient and the calculation formulas precisely describing the studied condenser configuration.

Funder

Ministry of Education Youth and Sports

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference15 articles.

1. Entropy Analysis of Mixed Convective Condensation by Evaluating Fan Velocity With a New Approach

2. Interfacial Phenomena: Equilibrium and Dynamic Effects;Miller,2008

3. Die Oberflächenkondensation des Wasserdampfes;Nusselt;Z. Ver. Dtsch. Ing.,1916

4. A Boundary-Layer Treatment of Laminar-Film Condensation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3