Advanced Limited Search Strategy for Enhancing the Performance of MPPT Algorithms

Author:

Pervez ImranORCID,Antoniadis CharalamposORCID,Massoud Yehia

Abstract

Photovoltaic (PV) arrays are gaining popularity for electricity generation due to their simple and green energy production. However, the power transfer efficiency of PV varies depending on the load’s electrical properties, the PV panels’ temperature, and the insolation conditions. Maximum Power Point Tracking (MPPT) is a method formulated as an optimization problem that adjusts the PV output voltage to deliver maximum power to the load based on these criteria (maximum power in the P-V curve). MPPT is a convex optimization problem when the Sun’s rays completely cover the PV surface (full insolation). Several power points are formed in the Power vs. Voltage (P-V) curve, rendering MPPT as a non-convex problem during incomplete insolation (partial shadowing) on the PV surface due to barriers such as passing clouds or trees in the path of the Sun and the PV’s surface. Unfortunately, mathematical programming techniques, such as gradient ascent and momentum, are not good optimization candidate algorithms because they cannot distinguish between the local and global maximum of a function (the case of non-convex problems). On the other hand, metaheuristic algorithms have better search space exploration capability, making it easier to discern the P-V curve’s local and global power peaks. However, due to their pseudorandom search space exploration (random with some intuition), there is plenty of room for improving their performance. In this work, we elaborate on the Advanced Limited Search Strategy (ALSS), a technique we proposed in one of our previous works on MPPT. We prove its universal usefulness by applying it to other MPPT algorithms to enhance their performance. The ALSS first finds the direction where it is most probable to discover the MPP using the finite difference between two candidate duty cycles and then computes a duty cycle between two bounds designated by the previous direction. After that, the resulting duty cycle is further updated according to the metaheuristic update equation. Therefore, the single solution update is another advantage of ALSS that further improves the computational cost of the MPPT algorithms.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3