Optimisation of Induced Steam Residual Moisture Content in a Clothing Conditioner Based on a Genetic Algorithm

Author:

Saleem Arslan,Saeed MuhammadORCID,Kim Man-HoeORCID

Abstract

This paper presents the modelling of heat and moisture transfer in a clothes-conditioning unit with the aim of improving the moisture content distribution to the clothes. A multicomponent, non-reacting, two-phase Eulerian–Eulerian model was utilised to solve the computational model. The clothes inside the conditioning unit were modeled as retangular towels (porous medium) of uniform thickness. Mass flow distribution of air and steam through the clothes was studied by systematically varying the steam nozzle angle (30° to 75°) and air inflow grill angle (45° to 105°). The simulation results were studied to identify the impact of design parameters on the mass flow distribution inside the clothes-conditioning unit. The mass flow of steam and the air–steam mixture were calculated through each towel in the forward and reverse direction. Response surface analysis was conducted to correlate the total mass flow rate and steam mass flow rate through each towel with the design variables. Moreover, a multiobjective genetic algorithm was employed to optimise the mass flow through the clothes and ascertain the optimal design configuration. The geometric configuration with a steam nozzle angle of 45° and air grill angle of 105° resulted in optimal steam and mixture distribution.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3