Quantitative Seismic Interpretation of Reservoir Parameters and Elastic Anisotropy Based on Rock Physics Model and Neural Network Framework in the Shale Oil Reservoir of the Qianjiang Formation, Jianghan Basin, China

Author:

Guo ZhiqiORCID,Zhang Tao,Liu Cai,Liu Xiwu,Liu Yuwei

Abstract

Quantitative estimates of reservoir parameters and elastic anisotropy using seismic methods is essential for characterizing shale oil reservoirs. Rock physics models were established to quantify elastic anisotropy associated with clay properties, laminated microstructures, and bedding fractures at different scales in shale. The inversion schemes based on the built rock physics models were proposed to estimate reservoir parameters and elastic anisotropy using well log data. Based on the back propagation neural network framework, the obtained rock physical inversion results were used to establish the nonlinear models between elastic properties and reservoir parameters and elastic anisotropy of shale. The established correlations were applied for quantitative seismic interpretation, converting seismic inversion results to the reservoir parameters and elastic anisotropy to characterize the shale oil reservoir comprehensively. The predicted elastic anisotropy of the shale matrix reflects the lamination degree and the mechanical properties of the shale, which is critical for the effective implementation of hydraulic fracturing. The calculated elastic anisotropy of the shale provides more accurate models for seismic modeling and inversion. The obtained bedding fracture parameters provide insights into reservoir permeability. Therefore, the proposed method provides valuable information for identifying favorable oil zones in the study area.

Funder

National Natural Science Foundation of China

SINOPEC Key Laboratory of Geophysics

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3