FTCN: A Reservoir Parameter Prediction Method Based on a Fusional Temporal Convolutional Network

Author:

Zhang Hongxia,Fu Kaijie,Lv Zhihao,Wang Zhe,Shi Jiqiang,Yu Huawei,Ge Xinmin

Abstract

Predicting reservoir parameters accurately is of great significance in petroleum exploration and development. In this paper, we propose a reservoir parameter prediction method named a fusional temporal convolutional network (FTCN). Specifically, we first analyze the relationship between logging curves and reservoir parameters. Then, we build a temporal convolutional network and design a fusion module to improve the prediction results in curve inflection points, which integrates characteristics of the shallow convolution layer and the deep temporal convolution network. Finally, we conduct experiments on real logging datasets. The results indicate that compared with the baseline method, the mean square errors of FTCN are reduced by 0.23, 0.24 and 0.25 in predicting porosity, permeability, and water saturation, respectively, which shows that our method is more consistent with the actual reservoir geological conditions. Our innovation is that we propose a new reservoir parameter prediction method and introduce the fusion module in the model innovatively. Our main contribution is that this method can well predict reservoir parameters even when there are great changes in formation properties. Our research work can provide a reference for reservoir analysis, which is conducive to logging interpreters’ efforts to analyze rock strata and identify oil and gas resources.

Funder

The Major Scientific and Technological Projects of CNPC

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference46 articles.

1. Application status and prospects of artificial intelligence in well logging and formation evaluation;Xu;Acta Pet. Sin.,2021

2. Learning representations by back-propagating errors

3. Neural networks and physical systems with emergent collective computational abilities.

4. Long Short-Term Memory

5. Learning phrase representations using RNN encoder-decoder for statistical machine translation;Cho;Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2014),2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3