A Study on the Control Solution of Ship’s Central Fresh Water-Cooling System for Efficient Energy Control Based on Merchant Training Ship

Author:

Jeon Tae-YoulORCID,Lee Chang-MinORCID,Hur Jae-JungORCID

Abstract

Large ships adopt a central fresh water-cooling system that indirectly cools waste heat with seawater to discharge the ship′s waste heat out of the ship. Such a central fresh water-cooling system is essential for future electric powered ships. Since 2010, shipping companies have attempted to save energy by applying variable-speed cooling pumps to the central FW cooling system, but due to the minimum-required discharge pressure of the pump, they have applied the existing 3-way valve system alongside. However, since the control systems of the variable-speed cooling pump and the 3-way valve are controlled by the same output variable, the two control systems collide during operation. Therefore, for efficient energy-saving control, it is important to accurately model the central fresh water-cooling system and find the optimal control method on this basis. In this study, a ship’s central cooling system was mathematically modeled and verified by comparing it with the actual ship′s operation data. A control solution method to effectively save energy for the central cooling system was proposed

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3