Forecasting Shanghai Container Freight Index: A Deep-Learning-Based Model Experiment

Author:

Hirata EnnaORCID,Matsuda TakumaORCID

Abstract

With the increasing availability of large datasets and improvements in prediction algorithms, machine-learning-based techniques, particularly deep learning algorithms, are becoming increasingly popular. However, deep-learning algorithms have not been widely applied to predict container freight rates. In this paper, we compare a long short-term memory (LSTM) method and a seasonal autoregressive integrated moving average (SARIMA) method for forecasting the comprehensive and route-based Shanghai Containerized Freight Index (SCFI). The research findings indicate that the LSTM deep learning models outperformed SARIMA models in most of the datasets. For South America and the east coast of the U.S. routes, LSTM could reduce forecasting errors by as much as 85% compared to SARIMA. The SARIMA models performed better than LSTM in predicting freight movements on the west and east Japan routes. The study contributes to the literature in four ways. First, it presents insights for improving forecasting accuracy. Second, it helps relevant parties understand the trends of container freight markets for wiser decision-making. Third, it helps relevant stakeholders understand overall container shipping market trends. Lastly, it can help hedge against the volatility of freight rates.

Funder

Japan Society for the Promotion of Science

Takushoku University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference33 articles.

1. Maritime Economics 3e;Stopford,2008

2. Forecasting container shipping freight rates for the Far East – Northern Europe trade lane

3. Container Forecaster Q2/2020 https://www.drewry.co.uk/

4. Freight Markets and Products;Kavussanos,2014

5. Contestability of Container Liner Shipping Market in Alliance Era

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3