Filtration Rates and Scaling in Demosponges

Author:

Riisgård Hans UlrikORCID,Larsen Poul S.ORCID

Abstract

Demosponges are modular filter-feeding organisms that are made up of aquiferous units or modules with one osculum per module. Such modules may grow to reach a maximal size. Various demosponge species show a high degree of morphological complexity, which makes it difficult to classify and scale them regarding filtration rate versus sponge size. In this regard, we distinguish between: (i) small single-osculum sponges consisting of one aquiferous module, which includes very small explants and larger explants; (ii) multi-oscula sponges consisting of many modules, each with a separate osculum leading to the ambient; and (iii) large single-osculum sponges composed of many aquiferous modules, each with an exhalant opening (true osculum) leading into a common large spongocoel (atrium), which opens to the ambient via a static pseudo-osculum. We found the theoretical scaling relation between the filtration rate (F) versus volume (V) for (i) a single-osculum demosponge to be F = a3V2/3, and hence the volume-specific filtration rate to scale as F/V ≈ V−1/3. This relation is partly supported by experimental data for explants of Halichondria panicea, showing F/V = 2.66V−0.41. However, for multi-oscula sponges, many of their modules may have reached their maximal size and hence their maximal filtration rate, which would imply the scaling F/V ≈ constant. A similar scaling would be expected for large pseudo-osculum sponges, provided their volume was taken to be the structural tissue volume that holds the pumping units, and not the total volume that includes the large atrium volume of water. This may explain the hitherto confusing picture that has emerged from the power-law correlation (F/V = aVb) of many various types of demosponges that show a range of negative b-exponents. The observed sharp decline in the volume-specific filtration rate of demosponges from their very small to larger sizes is discussed.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3