A Novel Sound Speed Profile Prediction Method Based on the Convolutional Long-Short Term Memory Network

Author:

Li BingyangORCID,Zhai Jingsheng

Abstract

As an important marine environmental parameter, sound velocity greatly affects the sound propagation characteristics in the ocean. In marine surveying work, prompt and low-cost acquisition of accurate sound speed profiles (SSP) is of immense significance for improving the measurement and positioning accuracy of marine acoustic equipment and ensuring underwater wireless communication. To address the problem of not being able to glean the accurate SSP in real time, we propose a convolution long short-term memory neural network (Conv-LSTM) which combines the long short-term memory (LSTM) neural network and convolution operation to predict the complete sound speed profile based on historical data. Considering SSP is a typical time series and has strong spatial correlation, Conv-LSTM can grasp not only the temporal relevance of time series, but also the spatial characteristics. The Argo temperature and salinity grid data of the North Pacific from 2004 to 2019 is imported to establish the model’s SSP dataset, and the convolution of input data is performed before going through the neurons in this recurrent neural network to extract the spatial relevance of the data itself. In the meantime, in order to prove the advanced nature of this model, we compare it with the LSTM network under the same parameter settings. The experimental results show that predicting the SSP time series at a single coordinate position under the same parameter conditions, it is best to predict the future SSP next month through the historical data of 24 months, and the prediction effect of Conv-LSTM is much better than that of the LSTM network, and the relative error (RE) is 0.872 m/s, which is 1.817 m/s less than that of LSTM. Predictions in the selected area are also exceedingly accurate relative to the actual data; the prediction error of deep water is less than 0.3 m/s, while RE on the surface layer is larger, exceeding 1.6 m/s.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3