Experimental Study on the Probability of Different Wave Impact Types on a Vertical Wall with Horizontal Slab by Separation of Quasi-static Wave Impacts

Author:

Huang JianjunORCID,Chen Guoping,Lowe Ryan J.

Abstract

When the fundamental natural frequency of marine structures is comparable to the dominant frequency of incident waves, the response of the load on the structure will be amplified. Accurately quantifying how wave loads can be amplified by incident wave conditions must thus be considered in any structural analysis, given how sensitive these characteristics are to different wave impact types. Systematic physical model tests of wave impacts on the simple horizontal plate and the vertical wall with a horizontal overhanging cantilever slab were performed. By first comparing quasi-static wave load estimates along a simple horizontal plate (obtained by low-pass filtering the pressure time series at different cut-off frequencies) with quasi-static uplift pressures from established predictive formulations, a cut-off frequency of 7 Hz was found to accurately separate the quasi-static component from impulsive wave impacts. By applying the low-pass filtering approach with the selected cut-off frequency to the pressure measurements for the vertical wall with a horizontal cantilever slab case, the impulsive and quasi-static peaks were attained, which were then used to quantify the probabilities of individual impulsive, dynamic, and quasi-static wave impacts. Incoming wave conditions and structural clearance had a significant effect on the probabilities of different wave impacts. With the increasing wave height and wave steepness, wave impacts on the horizontal slab and vertical wall were increasingly of the impulsive type and less frequently of the quasi-static type, while the probability of dynamic impact types were relatively stable. As the overhanging slab was shifted from elevated to submerged, the dominant type of wave impact on the structure was variable, ranging from impulsive to dynamic to quasi-static as its elevation was lowered. The results indicated that up to 90% of the impacts were of the impulsive type when the overhanging slab was on or slightly over the still water level. Moreover, the presence of the vertical wall increased the magnitude of wave loads and the occurring frequency of impulsive wave impacts for the horizontal slab.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3