First-Order Ocean Surface Cross Section for Shipborne Bistatic HFSWR: Derivation and Simulation

Author:

Ji YonggangORCID,Liang Xu,Sun WeifengORCID,Huang WeiminORCID,Wang Yiming,Wang Xinling,Li Zhihao

Abstract

A bistatic high-frequency surface wave radar (HFSWR) with both receiving and transmitting stations placed on different ships (platforms) is a new radar system and referred to as shipborne bistatic HFSWR. In this paper, a first-order ocean surface cross section of shipborne bistatic HFSWR was derived. The first-order cross-section models for three different cases, i.e., ships moving with uniform, periodic, and hybrid motion states, respectively, are presented. The corresponding first-order Doppler spectra were simulated, and the spread width of the first-order spectrum was investigated. The simulation results show that the characteristics of the first-order spectrum are similar to those of a shore-based bistatic HFSWR when the transmitting and receiving platforms move in opposite directions. The first-order spectral spread width in the case of platforms with opposite directions is much smaller than that in the case of platforms with the same direction. This finding is useful for reducing HFSWR first-order spectrum spread due to platform motion, thus improving the target detection performance of the shipborne bistatic HFSWR. In addition, periodic oscillation motion of both platforms will cause complex motion-induced peaks in the first-order spectrum, which may be detrimental to target detection and ocean remote sensing. These results have important implications for the application of shipborne bistatic HFSWR.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3