Sparse Polynomial Chaos Expansion for Uncertainty Quantification of Composite Cylindrical Shell with Geometrical and Material Uncertainty

Author:

Chen Ming,Zhang Xinhu,Shen Kechun,Pan Guang

Abstract

The geometrical dimensions and mechanical properties of composite materials exhibit inherent variation and uncertainty in practical engineering. Uncertainties in geometrical dimensions and mechanical properties propagate to the structural performance of composite cylindrical shells under hydrostatic pressure. However, traditional methods for quantification of uncertainty, such as Monte Carlo simulation and the response surface method, are either time consuming with low convergence rates or unable to deal with high-dimensional problems. In this study, the quantification of the high-dimensional uncertainty of the critical buckling pressure of a composite cylindrical shell with geometrical and material uncertainties was investigated by means of sparse polynomial chaos expansion (PCE). With limited design samples, sparse PCE was built and validated for predictive accuracy. Statistical moments (mean and standard deviation) and global sensitivity analysis results were obtained based on the sparse PCE. The mean and standard deviation of critical buckling pressure were 3.5777 MPa and 0.3149 MPa, with a coefficient of variation of 8.801%. Global sensitivity analysis results from Sobol’ indices and the Morris method showed that the uncertainty of longitudinal modulus has a massive influence on the critical buckling pressure of composite cylindrical shell, whereas the uncertainties of transverse modulus, shear modulus, and Poisson’s ratio have a weak influence. When the coefficient of variation of ply thickness and orientation angle does not surpass 2%, the uncertainties of ply thickness and orientation angle have a weak influence on the critical buckling pressure. The study shows that the sparse PCE is effective at resolving the problem of high-dimensional uncertainty quantification of composite cylindrical shell with geometrical and material uncertainty.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse polynomial chaos expansion and adaptive mesh refinement for enhanced fracture prediction using phase-field method;Theoretical and Applied Fracture Mechanics;2024-10

2. Efficient quantification of composite spatial variability: A multiscale framework that captures intercorrelation;Composite Structures;2023-11

3. Uncertainty Analysis of a Composite Plate Using Anti-optimization and PCE;Proceedings of the 6th International Symposium on Uncertainty Quantification and Stochastic Modelling;2023-10-22

4. Frontiers in Deep-Sea Equipment and Technology;Journal of Marine Science and Engineering;2023-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3