Design of a Broadband Cavity Baffle Bender Transducer

Author:

Zhao Zhiwei,Wu JinqiuORCID,Qi Xiaofei,Qiao Gang,Zhang WenboORCID,Zhang Chaofan,Guo Kang

Abstract

As low-frequency and broadband acoustic emission capability is beneficial to the detection range and acoustic communication speed of small scale autonomous underwater vehicles (AUV), this type of transducer is required, especially in cases of complex acoustic environments. A broadband bender transducer with cavity baffle that suits small scale AUV is proposed. Rather than additional benders, a passive cavity baffle, which would be capable of providing mutual radiation and a fluid cavity mode, is introduced to a single bender. The bending resonant frequency is reduced by the mutual radiation between the bender and the cavity baffle, the cavity baffle extends the lower limit of the available frequency band of the transducer, the liquid resonant frequency behind the former expands the higher limit, then the cavity baffle bender transducer fills the role of radiating low-frequency and broadband emissions through multimode coupling. The finite element method is used to analyze the acoustic performance of the transducer under different baffle conditions. Then, a prototype of the broadband cavity baffle bender transducer is developed according to the optimized parameters of simulation. The acoustic parameters of the prototype were measured in an anechoic pool. The resonant frequency measured in water of the bender itself is 3 kHz, and the −3dB bandwidth is 560 Hz. The prototype test results show that the cavity baffle scheme can improve the −3dB bandwidth of the bender from 560 Hz to 1000 Hz, which fundamentally realizes the expectations of the prototype design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3