Abstract
Marine energy devices must be attached to the seafloor by their foundations, pilings, or anchors, and will have other parts in the water column like the devices themselves, mooring lines, and power export cables running along the seafloor. The installation and presence of these artificial structures will create physical changes that can disrupt or create new habitats, and potentially alter the behavior of mobile organisms such as fish around a device by attracting them to these new artificial reefs and fish aggregating devices. In this study, we tested a new approach for monitoring fish activity around a marine energy device anchor: a 360-degree underwater camera to keep the target (a wave energy converter’s anchor) in the field of view of the camera. The camera was deployed in three configurations (hand-held, tripod, video lander) at sites with different hydrodynamics and underwater visibilities. The video lander was the best configuration: very stable, versatile, and easy to handle. The 360-degree field of view enabled observing and counting fishes, which were more abundant at dusk than dawn or noon, around the anchor. Despite remaining challenges, 360-degree cameras are useful tools for monitoring animal interactions with marine energy devices.
Funder
United States Department of Energy
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference34 articles.
1. Changes in Benthic and Pelagic Habitats Caused by Marine Renewable Energy Devices;Hemery,2020
2. Evaluating the Potential for Marine and Hydrokinetic Devices to Act as Artificial Reefs or Fish Aggregating Devices, Based on Analysis of Surrogates in Tropical, Subtropical, and Temperate U.S. West Coast and Hawaiian Coastal Waters;Kramer,2015
3. Artificial Reef Effect in relation to Offshore Renewable Energy Conversion: State of the Art
4. The location of offshore wave power devices structures epifaunal assemblages
5. Fishes associated with artificial reefs: attributing changes to attraction or production using novel approaches
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献