Future Climate Change Conditions May Compromise Metabolic Performance in Juveniles of the Mud Crab Scylla serrata

Author:

Apine ElinaORCID,Mani Madhu K.,Rai PraveenORCID,Karunasagar IndraniORCID,Turner Lucy M.ORCID

Abstract

Research characterising the effects of future climate change on the marine environment remains heavily focussed on that of temperate regions and organisms. Furthermore, little is known of these effects on the early life stages of many marine species. Tropical regions are already experiencing an increase in sea surface temperature and decrease in sea surface salinity, conditions favoured by pathogenic bacteria such as Vibrio spp. The early life stages of crabs are known to be particularly vulnerable to both the direct physiological effects of climate change and exposure to harmful microorganisms, yet there are limited data on these effects on juveniles of many tropical crustacean species. This study assessed the metabolic responses of mud crab (Scylla serrata) juveniles to warming and/or freshening in the presence or absence of pathogenic bacteria in southwest India. Juvenile crabs were exposed to either ambient (28 °C/30 PSU) or one of three projected climate change regimes (28 °C/20 PSU (freshening), 32 °C/30 PSU (warming), 32 °C/20 PSU (warming + freshening)) for 10 days, in either the presence or absence of the pathogenic bacteria Vibrio parahaemolyticus. Results show that simulated climate change conditions, especially freshening, caused a significant increase in oxygen consumption rates (MO2), and that these were further increased when juveniles were exposed to V. parahaemolyticus. These results suggest that the effects of future climate change conditions could have significant implications for the conservation of wild stocks and commercial farming of this species in South Asia.

Funder

University of Plymouth

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climate change and multiple stressors;Ecophysiology of the European Green Crab (Carcinus Maenas) and Related Species;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3