Experimental and Numerical Study of the Influence of Clumped Weights on a Scaled Mooring Line

Author:

Lopez-Olocco TomasORCID,González-Gutiérrez Leo M.ORCID,Calderon-Sanchez JavierORCID,Marón Loureiro Adolfo,Saavedra Ynocente Leandro,Bezunartea Barrio Ana,Vivar Valdés Nicolás

Abstract

Recently, several experimental and numerical studies have underlined the advantages of adding clumped weights at discrete positions of mooring lines. To confirm the influence of these weights, an experimental study was performed for a 1:30 scale model of a mooring line. In this study, the clumped weight is modeled as a scaled disc placed at different positions along the mooring line. The series of experiments has been carried out at the CEHIPAR towing tank using a submerged studless chain both with and without clumped weights. The experiments consist of the excitation of the suspension point with horizontal periodic motions using different amplitudes and periods, where the mooring line’s tension at the fairlead is measured using a load cell and a dynamometer, and the motion of a part of the line is recorded using low-cost submerged cameras. Similarly to previous experiments, the fairlead tensions increase with higher amplitudes and lower periods, and a clear pattern in the motions of the line at different depths is found. The dissipated energy and the fairlead tension is also increased by the addition of the clumped weight, and the variation of this energy with its position along the line is monitored. The presence of clumped weights is also implemented into a finite element numerical code, previously validated without clumped weights, where all the previous experiments with clumped weights are replicated with remarkable accuracy. This double experimental and computational approach to the problem provides an important dataset for numerical code validations and opens future discussions about the impact of clumped weights on floating platforms.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference42 articles.

1. Offshore Wind in Europe—Key Trends and Statistics 2020https://windeurope.org/intelligence-platform/product/offshore-wind-in-europe-key-trends-and-statistics-2020/

2. An Experimental Study of Mooring Line Damping and Snap Load in Shallow Water

3. Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review

4. Prediction of extreme tensions in mooring lines of a floating offshore wind turbine in a 100-year storm;Hsu,2015

5. A methodology for assessing the reliability of taut and slack mooring systems against instability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3