Mitogenomics and the Global Dispersion of Vespula germanica: A Case Study from South Africa Shows Evidence for Two Separate Invasion Events

Author:

van Asch BarbaraORCID,Wolf Michael,Marais Inès,Daly Derek,Veldtman Ruan

Abstract

Vespula germanica is currently present in all major world regions outside its native Northern Hemisphere range and poses a biological threat to the invaded ecosystems. The genetic diversity of the species is poorly described in both the native and invaded ranges, thus hampering insights into possible mechanisms of invasion. In South Africa, V. germanica was first detected in 1972, and a recent study concluded that one large or several independent invasion events had occurred. However, the high number of low-frequency haplotypes reported therein raised doubts about the quality of the data. In this study, we reassessed the haplotype diversity of V. germanica in South Africa under improved methodological conditions. New mitochondrial markers were developed using complete mitochondrial genomes of V. germanica that allowed the identification of polymorphic regions and the design of robust species-specific primers. Contrary to two previous studies, only two mitochondrial haplotypes were found in South Africa despite almost doubling the number of sampled nests. It is likely that that the number of haplotypes previously reported was overestimated due to the miscalling of nucleotide positions in the electropherograms. Furthermore, the two haplotypes found have contrasting geographic distributions, which supports the known invasion history for this species. Availability of complete mitochondrial genomes for selection of polymorphic regions and design of robust species-specific primers improved the accuracy of the assessment of V. germanica diversity in South Africa. This approach will also be valuable for studying invasive wasp populations of this and other species globally.

Funder

South African Department of Forestry, Fisheries and the Environment

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3