Deep Fusion Prediction Method for Nonstationary Time Series Based on Feature Augmentation and Extraction

Author:

Zhang Yu-Lei123,Bai Yu-Ting123ORCID,Jin Xue-Bo123ORCID,Su Ting-Li123,Kong Jian-Lei123ORCID,Zheng Wei-Zhen123

Affiliation:

1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

2. State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China

3. China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China

Abstract

Deep learning effectively identifies and predicts modes but faces performance reduction under few-shot learning conditions. In this paper, a time series prediction framework for small samples is proposed, including a data augmentation algorithm, time series trend decomposition, multi-model prediction, and error-based fusion. First, data samples are augmented by retaining and extracting time series features. Second, the expanded data are decomposed based on data trends, and then, multiple deep models are used for prediction. Third, the models’ predictive outputs are combined with an error estimate from the intersection of covariances. Finally, the method is verified using natural systems and classic small-scale simulation datasets. The results show that the proposed method can improve the prediction accuracy of small sample sets with data augmentation and multi-model fusion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3