Affiliation:
1. School of Art and Design, Guangdong University of Technology, Guangzhou 510090, China
2. City School, Guangzhou Academy of Fine Art, Guangzhou 510006, China
Abstract
VR rehabilitation is a rapidly evolving field, with increasing research and development aimed at improving its effectiveness, accessibility, and integration into mainstream healthcare systems. While there are some commercially available VR rehabilitation programs, their adoption and use in clinical practice are still limited. One of the limitations is defined as cybersickness, which is dependent on human contact with virtual reality products. The purpose of this essay is to raise awareness of the associated elements that contribute to cybersickness in rehabilitation using immersive VR. The common factors that influence the amount of cybersickness are user characteristics and device software and hardware. The Simulator Sickness Questionnaire (SSQ) was used as one of the formal models for determining the variables related to virtual reality sickness. The systematic review of the literature and the meta-analysis were chosen by whether the Simulator Sickness Questionnaire in the articles matched the research criteria. Based on PRISMA guidelines, a systematic review of the literature was conducted. Twenty-six publications from the recent past were totaled, comprising 862 individuals with ages ranging from 19 to 95, and 49% were female. The highest overall SSQ mean score for different kinds of symptoms was determined to be 21.058 for brain injuries, with a 95% confidence interval (CI) of 15.357 to 26.760. Time, content, locomotion, control, and display types were other elements that contributed to cybersickness and had significant p-values in the SNK Q-test. The future direction of immersive VR rehabilitation involves the development of immersive and interactive environments that simulate real-world situations, providing patients with a safe and controlled environment in which to practice new skills and movements.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献