Infrared All-Dielectric Metasurface Beam Splitter Based on Transflective Structures

Author:

Ren Yingzheng12ORCID,Liang Zhongzhu123,Shi Xiaoyan123,Yang Fuming12,Zhang Xiqing3,Dai Rui3,Zhang Shoutao3ORCID,Liu Weizhen3

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 101408, China

3. Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, College of Physics, Northeast Normal University, Changchun 130024, China

Abstract

Beam splitters are widely applied in various optical systems as a common beam-splitting device. The conventional stereoscopic and flat-type beam splitters greatly limit the packaging and integration of optical systems due to their large size and restricted emitting direction. Recently, beam-splitting devices made of various transmissive or reflective metasurfaces have shown the potential to overcome these challenges. However, in optical systems such as machine vision, these single-ended beam splitters increase the design complexity of the signal feedback link due to the limitation of the beam-splitting path direction. Here, we proposed and numerically simulated a transflective all-dielectric metasurface beam splitter by applying incompletely transmissive structural designs to the metasurface and using the transmission phase modulation mechanism. It can realize the beam separation for arbitrarily polarized incident light on the same side of the normal at both transmissive and reflective ends with a single-layer unit cell arrangement structure and has a similar emergence angle. The results reveal that at 1550 nm, the angular tolerance bandwidth is about 32°, the total splitting efficiency is over 90%, and the splitting ratio is approximately 1:1. After comparison and verification of simulation results, this transflective metasurface beam splitter is hopeful to be applied in new compact optical systems that require real-time signal feedback, such as coaxial light sources and photoelectric sensing.

Funder

National Natural Science Foundation of China

Science Fund for Distinguished Young Scholars of Jilin Province

Scientific and Technological Development Project of Jilin Province

Excellent Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences

Leading Talents and Team Project of Scientific and Technological Innovation for Young and Middle-aged Groups in Jilin Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3