Forest Fragmentation and Landscape Connectivity Changes in Ecuadorian Mangroves: Some Hope for the Future?

Author:

Jaramillo Julio J.1ORCID,Rivas Carlos A.23ORCID,Oteros José4ORCID,Navarro-Cerrillo Rafael M.3ORCID

Affiliation:

1. Environmental Engineering Career, Universidad Estatal del Sur de Manabí, Jipijapa 130650, Manabí, Ecuador

2. Facultad de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo 130105, Manabí, Ecuador

3. Department of Forest Engineering, Laboratory of Dendrochronology, Silviculture and Global Change—DendrodatLab—ERSAF, University of Córdoba, Campus de Rabanales, Crta. IV, km. 396, E-14071 Córdoba, Spain

4. Department of Botany, Ecology and Plant Physiology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Rabanales Campus, Celestino Mutis Building, E-14071 Córdoba, Spain

Abstract

This study investigates the impact of fragmentation on Ecuador’s coastal mangrove forests. Fragmentation is identified as a primary cause of aquatic ecosystem degradation. We analyzed the relationship between habitat loss, fragmentation, and mangrove connectivity through a multitemporal approach using Global Mangrove Watch and fragmentation and connectivity metrics. The terrain was divided into 10 km2 hexagons, and six fragmentation metrics were calculated. A Getis–Ord Gi* statistical analysis was used to identified areas with the best and worst conservation status, while connectivity analyses were performed for a generic species with a 5 km dispersion. Findings revealed widespread mangrove fragmentation in Ecuador, with geographical differences between the insular region (Galapagos) and the mainland coast. Minimal loss or even expansion of mangrove forests in areas like the Galapagos Islands contrasted with severe fragmentation along the mainland coast. Transformation of forests into fisheries, mainly prawn factories, was the primary driver of change, while only a weak correlation was observed between mangrove fragmentation and conversion to agriculture, which accounts for less than 15% of all deforestation in Ecuador. Fragmentation may increase or decrease depending on the management of different deforestation drivers and should be considered in large-scale mangrove monitoring. Focusing only on mangrove deforestation rates in defining regional conservation priorities may overlook the loss of ecosystem functions and fragmentation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3