Semantic-Based Multi-Objective Optimization for QoS and Energy Efficiency in IoT, Fog, and Cloud ERP Using Dynamic Cooperative NSGA-II

Author:

Reffad Hamza1ORCID,Alti Adel12ORCID

Affiliation:

1. LRSD, Faculty of Sciences, Computer Science Department, University Ferhat Abbas Sétif 1, Sétif 19000, Algeria

2. Department of Management Information Systems, College of Business & Economics, Qassim University, Buraidah 51452, Saudi Arabia

Abstract

Regarding enterprise service management, optimizing business processes must achieve a balance between several service quality factors such as speed, flexibility, and cost. Recent advances in industrial wireless technology and the Internet of Things (IoT) have brought about a paradigm shift in smart applications, such as manufacturing, predictive maintenance, smart logistics, and energy networks. This has been assisted by smart devices and intelligent machines that aim to leverage flexible smart Enterprise Resource Planning (ERP) regarding all the needs of the company. Many emerging research approaches are still in progress with the view to composing IoT and Cloud services for meeting the expectation of companies. Many of these approaches use ontologies and metaheuristics to optimize service quality of composite IoT and Cloud services. These approaches lack responsiveness to changing customer needs as well as changes in the power capacity of IoT devices. This means that optimization approaches need an effective adaptive strategy that replaces one or more services with another at runtime, which improves system performance and reduces energy consumption. The idea is to have a system that optimizes the selection and composition of services to meet both service quality and energy saving by constantly reacting to context changes. In this paper, we present a semantic dynamic cooperative service selection and composition approach while maximizing customer non-functional needs and quickly selecting the relevant service drive with energy saving. Particularly, we introduce a new QoS energy violation degree with a cooperative energy-saving mechanism to ensure application durability while different IoT devices are run-out of energy. We conduct experiments on a real business process of the company SETIF IRIS using different cooperative strategies. Experimental results showed that the smart ERP system with the proposed approach achieved optimized ERP performance in terms of average service quality and average energy consumption ratio equal to 0.985 and 0.057, respectively, in all simulated configurations compared to ring and maser/slave methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3