Intelligent Parking Control Method Based on Multi-Source Sensory Information Fusion and End-to-End Deep Learning

Author:

Ma Zhenpeng1,Jiang Haobin2,Ma Shidian2,Li Yue2

Affiliation:

1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

2. School of Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

Abstract

To address the challenges of inefficient intelligent parking performance and reduced efficiency in complex environments, this study presents an end-to-end intelligent parking control model based on a Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) architecture incorporating multi-source sensory information fusion to improve decision-making and adaptability. The model can produce real-time intelligent parking control decisions by extracting spatiotemporal features, including comprehensive 360-degree panoramic images and ultrasonic sensor distance measurements. To enhance the coverage of real-world environments in the dataset, a data collection platform was developed, leveraging the PreScan simulation platform in conjunction with actual parking environments. Consequently, a comprehensive parking environment dataset comprising various types was constructed. A deep learning model was devised to ameliorate horizontal and vertical control in intelligent parking systems, integrating Convolutional Neural Networks and Long Short-Term Memory in a parallel configuration. By meticulously accounting for parking environment characteristics, sliding window parameters were optimized, and transfer learning was employed for secondary model training to fortify the prediction accuracy. To ascertain the system’s robustness, simulation tests were performed. The ultimate results from the actual environment experiment revealed that the end-to-end intelligent parking model substantially surpassed the existing approaches, bolstering parking efficiency and effectiveness in complex contexts.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Huang, X. (2018). Study on Optimal Trajectory Decision and Control Algorithm of Automatic Parking System. [Master’s Thesis, Jilin University].

2. Optimized Parallel Parking Path Planning Based on Quintic Polynomial;Hu;Comput. Eng. Appl.,2022

3. Automatic Parking Path Tracking Control Based on Backstepping Sliding Mode Adaptive Strategy;Jiang;J. Chongqing Univ. Technol. Nat. Sci.,2020

4. Automatic Parking Control Method Based on the Linear-quadratic Regulator;Qian;Inform. Control,2021

5. Modeling parallel parking a car;Zhdanov;J. Comput. Syst. Sci. Int.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3