Fine-Tuning of Pre-Trained Deep Face Sketch Models Using Smart Switching Slime Mold Algorithm

Author:

Alhashash Khaled Mohammad1ORCID,Samma Hussein2ORCID,Suandi Shahrel Azmin1ORCID

Affiliation:

1. Intelligent Biometric Group, School of Electrical and Electronic Engineering, USM Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia

2. SDAIA-KFUPM Joint Research Center for Artificial Intelligence (JRCAI), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

There are many pre-trained deep learning-based face recognition models developed in the literature, such as FaceNet, ArcFace, VGG-Face, and DeepFace. However, performing transfer learning of these models for handling face sketch recognition is not applicable due to the challenge of limited sketch datasets (single sketch per subject). One promising solution to mitigate this issue is by using optimization algorithms, which will perform a fine-tuning and fitting of these models for the face sketch problem. Specifically, this research introduces an enhanced optimizer that will evolve these models by performing automatic weightage/fine-tuning of the generated feature vector guided by the recognition accuracy of the training data. The following are the key contributions to this work: (i) this paper introduces a novel Smart Switching Slime Mold Algorithm (S2SMA), which has been improved by embedding several search operations and control rules; (ii) the proposed S2SMA aims to fine-tune the pre-trained deep learning models in order to improve the accuracy of the face sketch recognition problem; and (iii) the proposed S2SMA makes simultaneous fine-tuning of multiple pre-trained deep learning models toward further improving the recognition accuracy of the face sketch problem. The performance of the S2SMA has been evaluated on two face sketch databases, which are XM2VTS and CUFSF, and on CEC’s 2010 large-scale benchmark. In addition, the outcomes were compared to several variations of the SMA and related optimization techniques. The numerical results demonstrated that the improved optimizer obtained a higher level of fitness value as well as better face sketch recognition accuracy. The statistical data demonstrate that S2SMA significantly outperforms other optimization techniques with a rapid convergence curve.

Funder

Malaysia Ministry of Higher Education (MOHE) Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3